Familial Alzheimer's disease-associated presenilin 1 mutants promote γ-secretase cleavage of STIM1 to impair store-operated Ca2+ entry.

نویسندگان

  • Benjamin Chun-Kit Tong
  • Claire Shuk-Kwan Lee
  • Wing-Hei Cheng
  • Kwok-On Lai
  • J Kevin Foskett
  • King-Ho Cheung
چکیده

Some forms of familial Alzheimer's disease (FAD) are caused by mutations in presenilins (PSs), catalytic components of a γ-secretase complex that cleaves target proteins, including amyloid precursor protein (APP). Calcium (Ca(2+)) dysregulation in cells with these FAD-causing PS mutants has been attributed to attenuated store-operated Ca(2+) entry [SOCE; also called capacitative Ca(2+) entry (CCE)]. CCE occurs when STIM1 detects decreases in Ca(2+) in the endoplasmic reticulum (ER) and activates ORAI channels to replenish Ca(2+) stores in the ER. We showed that CCE was attenuated by PS1-associated γ-secretase activity. Endogenous PS1 and STIM1 interacted in human neuroblastoma SH-SY5Y cells, patient fibroblasts, and mouse primary cortical neurons. Forms of PS1 with FAD-associated mutations enhanced γ-secretase cleavage of the STIM1 transmembrane domain at a sequence that was similar to the γ-secretase cleavage sequence of APP. Cultured hippocampal neurons expressing mutant PS1 had attenuated CCE that was associated with destabilized dendritic spines, which were rescued by either γ-secretase inhibition or overexpression of STIM1. Our results indicate that γ-secretase activity may physiologically regulate CCE by targeting STIM1 and that restoring STIM1 may be a therapeutic approach in AD.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

γ-Cleavage-Independent Functions of Presenilin, Nicastrin, and Aph-1 Regulate Cell-Junction Organization and Prevent Tau Toxicity In Vivo

Genetic analysis of familial Alzheimer's disease has revealed that mutations in the gamma-secretase enzyme presenilin promote toxic Abeta secretion; however, presenilin mutations might also influence tau hyperphosphorylation and neurodegeneration through gamma-secretase-independent mechanisms. To address this possibility and determine whether other components of the gamma-secretase complex poss...

متن کامل

γ-Secretase-Dependent Proteolysis of Transmembrane Domain of Amyloid Precursor Protein: Successive Tri- and Tetrapeptide Release in Amyloid β-Protein Production

γ-Secretase cleaves the carboxyl-terminal fragment (βCTF) of APP not only in the middle of the transmembrane domain (γ-cleavage), but also at sites close to the membrane/cytoplasm boundary (ε-cleavage), to produce the amyloid β protein (Aβ) and the APP intracellular domain (AICD), respectively. The AICD49-99 and AICD50-99 species were identified as counterparts of the long Aβ species Aβ48 and A...

متن کامل

Familial Alzheimer disease-linked mutations specifically disrupt Ca2+ leak function of presenilin 1.

Mutations in presenilins are responsible for approximately 40% of all early-onset familial Alzheimer disease (FAD) cases in which a genetic cause has been identified. In addition, a number of mutations in presenilin-1 (PS1) have been suggested to be associated with the occurrence of frontal temporal dementia (FTD). Presenilins are highly conserved transmembrane proteins that support cleavage of...

متن کامل

Familial Alzheimer's disease-linked presenilin-1 mutation M146V affects store-operated calcium entry: does gain look like loss?

Alzheimer's disease (AD) is a neurodegenerative disorder that leads to neuron death and synapse loss in the hippocampus and cortex, with consequent cognitive disability and dementia. Mutations in the presenilin-1 (PS1) gene lead to familial Alzheimer's disease (FAD). Here, we report that the expression of FAD-linked PS1 M146V mutant affects store-operated calcium channel activity (Isoc) in huma...

متن کامل

Substrate recruitment of γ-secretase and mechanism of clinical presenilin mutations revealed by photoaffinity mapping.

Intramembrane proteases execute fundamental biological processes ranging from crucial signaling events to general membrane proteostasis. Despite the availability of structural information on these proteases, it remains unclear how these enzymes bind and recruit substrates, particularly for the Alzheimer's disease-associated γ-secretase. Systematically scanning amyloid precursor protein substrat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Science signaling

دوره 9 444  شماره 

صفحات  -

تاریخ انتشار 2016